Applied Bayesian Data Analysis

Model checking

Concepts:

  • posterior predictive checking
  • test quantity, p-value
  • marginal checking, cross validation
  • sensitive analysis

David Tolpin, david.tolpin@gmail.com

Model checking in Bayesian data analysis

  • Is the model adequate?
  • Where is the problem?
    • prior
    • sampling
    • hierarchical structure

Sensitivity analysis and model improvement

  • How does the posterior change
  • A model may be adequate but sensitive
  • Is our model true or false?
  • Is the model good enough for our use?

Does the inference result make sense?

  • Is important knowledge omitted from the model?
  • External validation
  • Choice of predictive quantities

External validation

Choosing predictive quantities

  • Analysis depends on what we predict.
  • In hierarchical model we can predict (school, rats):
    • Either new group
    • Or new items in existing groups

Posterior predictive checking

Our models are generative

  • Draw samples from predictive posterior.
  • Compare the draws to the data.

Example: Newcomb's speed of light

Notation for replications

  • Replicated data: $y^{\mathrm{rep}}$
  • Same explanatory variables $x$ as in $y$
  • Posterior predictive of $y^{\mathrm{rep}}$: $$p(y^{\mathrm{rep}}|y)=\int p(y^{\mathrm{rep}}|\theta)p(\theta|y)d\theta$$

Test quantities

  • discrepancy measures — aspects of the data we want to check
  • $T(y, \theta)$ or $T(y^{\mathrm{rep}}, \theta)$
  • Posterior predictive p-values — $$p_{B}=\Pr(T(y^{\mathrm{rep}}, \theta) \ge T(y, \theta)|y)$$
  • In practice, use simulation to compute $y^{\mathrm{rep}}$ and $p_{B}$

Test quantities

Choosing test quantities

  • Should depend on data `more' than on parameters
  • Can use several test quantities for different aspects

Example: globe tosses

Interpreting p-values

  • Quantifying discrepancies between data and model
  • Limitations of posterior tests:
    • Adequate model can be bad ($\tau = 0$)
    • `Bad' model can work in some cases

Marginal predictive checks

  • Compute for each $y_i$: $$p_i = \Pr(T(y_i^{\mathrm{rep}}) \le T(y_i)|y)$$
  • Sometimes, best $T(y)$ is $T(y) = y$: $$p_i = \Pr(y_i^{\mathrm{rep}} \le y_i|y)$$
  • Example — 8 schools:
    • Marginal for each existing school
    • Margin for a new school
  • Cross validation: $$p_i = \Pr(y_i^{\mathrm{rep}} \le y_i|y_{-i})$$

Graphical posterior predictive checks

  • Direct data display
  • Summary statistics
  • Residuals

Direct data display

Summary statistics

Summary statistics

Residuals

Model checking on 8 schools

Assumptions:

  1. $y_j \sim \mathcal{N}(\theta_j, \sigma_j)$
  2. $\theta_j$ exchangeable
  3. (?) $\theta_j \sim \mathcal{N}(\mu, \tau)$
  4. (?) $p(\mu, \tau) = C$

Posterior predictive checking

Sensitivity analysis

Readings

  1. Bayesian Data Analysis — chapter 6.
  2. Statistical rethinking — section 3.2.2.
  3. Probabilistic Models of Cognition — chapter 7, section ‘Posterior prediction and model checking’.

Hands-on

  • Speed of light
  • Globe toss